WORCESTER POLYTECHNIC INSTITUTE

32nd INVITATIONAL MATH MEET
October 15, 2019
INDIVIDUAL EXAM with Answers
DIRECTIONS: Please write your answers on the Individual Answer Sheet provided. This part of the contest is 45 minutes long. Questions 1-4 are each worth 1 point. Questions 5-8 are each worth 2 points. Questions $9-11$ are each worth 3 points. Calculators and other electronics MAY NOT be used.

1 Point Each:

1. What are all the nonnegative integers x for which $(\mathbf{x}-\mathbf{6})(\mathbf{x}+\mathbf{1 4})$ is a perfect square?
ans: 6,22
2. A cow on 30^{\prime} rope is hooked to a corner of a $10^{\prime} \times 20^{\prime}$ barn. How many square feet of grazing area does she have? ans: $800 \pi \mathrm{ft}^{2}$
3. Assume that all of the following are nxn invertible matrices: $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{F}, \mathbf{X}$. Solve the following equation for $\mathrm{X}: \quad \mathbf{A}^{\mathbf{2}} \mathbf{B}^{\mathbf{- 1}} \mathbf{X} \mathbf{C}+\mathbf{F}=\mathbf{I}_{\mathbf{n}} .\left(\mathbf{I}_{\mathrm{n}}\right.$ denotes the nxn identity matrix)

$$
\text { ans: } \quad \mathrm{BA}^{-2}\left(\mathrm{I}_{\mathrm{n}}-\mathrm{F}\right) \mathrm{C}^{-1}
$$

4. Consider the circle $x^{2}+y^{2}=16$ and the ellipse $x^{2} / 16+y^{2} / 9=1$. What is the area inside the circle and outside the ellipse?
ans: $\quad 4 \pi$

2 Points Each:

5. If x is a real number such that $2 x^{3}+4 x^{2}+6 x+8=2468$, what is the value of $x^{3}+9 x^{2}+8 x+8 ? ?$ ans: 1988
6. What is the area of the smallest circle centered at the origin which touches both branches of the hyperbola $\mathbf{x y}=\mathbf{2}$?
ans: 4π
7. Please evaluate

$$
\sum_{j=2}^{5} \sum_{i=1}^{6}\left(j i^{2}+2\right)
$$

ans: 1322
8. In a certain school, 60% of the students have a dog at home. Suppose that 8 students are sampled. What is the probability that exactly 5 have a dog at home? (no need to simplify your resulting answer)

3 Points Each:

9. Consider the infinite series $1+\frac{i}{2}-\frac{1}{4}-\frac{i}{8}+\frac{1}{16}+\frac{i}{32} \ldots \quad$ where $i=\sqrt{-1}$ which converges to a point in the complex plane. If the distance of that point from the origin is $\frac{a \sqrt{5}}{b}$ find a and b.
ans: $a=2 \quad b=5$
10. What is the value of k for which

$$
\frac{2000!}{1000!}=k(1 \times 3 \times 5 \times 7 \times \ldots \times 1997 \times 1999) \quad ?
$$

ans: $\quad \mathrm{k}=2^{1000}$
11. How many $\mathbf{0}$'s are at the end of $\mathbf{6 2}$!
ans: 14

